Сталь конструкционная углеродистая качественная

В зависимости от содержания углерода различают следующие стали:

Низкоуглеродистые стали, содержащие до 0,25% углерода

Среднеуглеродистые стали, содержащие от 0,25 до 0,6% углерода

Высокоуглеродистые стали, содержащие от 0,6 до 2% углерода

К низкоуглеродистым относятся стали, не содержащие легирующих компонентов (кроме углерода). В низкоуглеродистых сталях присутствуют марганец и кремний, однако они не считаются легирующими компонентами, если содержание марганца не превышает 1% и кремния—0,8%.

Большинство сварных конструкций изготовляется из низкоуглеродистых сталей, выпускаемых в виде листов и фасонного проката — уголка, швеллеров, двутавровых балок и пр.

Стали делятся: по химическому составу — на углеродистые и легированные; по способу производства — на мартеновские, бессемеровские, конвертерные, электростали; по назначению — на конструкционые, инструментальные и стали с особыми свойствами.

Сталь углеродистая обыкновенного качества. Такая сталь, изготовляемая в мартеновских печах, в конвертерах с продувкой кислородом сверху и в бессемеровских конвертерах, поставляется по ГОСТ 380—60.

В зависимости от назначения и гарантируемых показателей сталь подразделяется на три группы:

группа А — поставляемая по механическим свойствам;

группа Б — поставляемая по химическому составу;

группа В — поставляемая по механическим свойствам с отдельными требованиями по химическому составу.

Для стали группы А установлены следующие марки: Ст. 0, Ст. 1, Ст. 2, Ст. 3, Ст. 4, Ст. 5, Ст. 6, Ст. 7. Если сталь относится к кипящей, то в обозначении марки ставится индекс кп, если к полуспокойной— пс (например, Ст. Зкп, Ст. 4пс и т! д.), отсутствие индекса означает, что сталь спокойная.

Кипящей называется сталь, неполностью раскисленная в печи и содержащая некоторое количество закиси железа, что обусловливает продолжение кипения стали в изложнице. Выплавка кипящей стали обходится дешевле, но такая сталь содержит растворенные газы, например, азот, при ее сварке иногда возникают трещины.

Если сталь в печи полностью раскислена, то она не содержит закиси железа и, будучи разлита в изложницы, не кипит. Такая сталь называется спокойной. Она не содержит газов, но ее выплавка обходится дороже. Для ответственных сварных конструкций предпочтительнее применять спокойную сталь.

Полуспокойная сталь раскислена в большей степени, чем кипящая, но менее, чем спокойная. Эта сталь затвердевает в изложницах без кипения, но с выделением газов; она содержит меньше (по сравнению с кипящей) газовых пузырей, которые полностью завариваются в процессе последующей прокатки. Полуспокойная сталь преимущественно применяется как конструкционная.

Сталь группы Б изготовляют мартеновским, бессемеровским и конвертерным способами. Сталь группы Б мартеновская в обозначении марки имеет букву М, бессемеровская — букву Б, конвертерная— букву К (например, МСт. 2кп, БСт. 3, КСт. Зпс). Бессемеровскую сталь группы Б изготовляют только марок БСт. О, БСт. 3, БСт. 4, БСт. 5, БСт. 6.

Сталь группы В изготовляют мартеновским и конвертерным способами. Мартеновскую сталь группы В изготовляют марок: ВМСт. 2, ВМСт. 3, ВМСт. 4, ВМСт. 5. Конвертерную сталь В изготовляют тех же марок, но в обозначении ее ставится буква К (например, ВКСт. 2, ВКСт. 3 и т. д.). Стали всех групп с порядковыми номерами 1, 2, 3 и 4 изготовляют кп, пс и сп стали с номерами 5, 6 и 7 — только пс и сп.

Ст. О — немаркированная строительная, в которой содержание углерода и других элементов может колебаться в широких пределах. Эта сталь может содержать повышенные количества серы и фосфора. Сталь Ст. О применяют только в конструкциях неответственного назначения.

Сталь марки ВМСт. 3 содержит углерода 0,14—0,22% и имеет следующие механические свойства: временное сопротивление 38— 47 кгс/мм2, предел текучести 22—24 кгс/мм2, относительное удлинение не менее 21%, ударную вязкость поперек прокатки — не менее 7 кгс-м/см2.

Качественные углеродистые конструкционные стали. Такие стали применяют для изготовления ответственных сварных конструкций. Они выпускаются по ГОСТ 1050—60, который гарантирует механические свойства и химический состав. Качественные углеродистые стали по ГОСТ 1050—60 маркируются цифрами, обозначающими среднее содержание углерода в сотых долях процента. Например, марки 05; 08; 15; 20 и т. д. означают, что сталь содержит в среднем углерода соответственно 0,05; 0,08; 0,15; 0,20%. Сталь по ГОСТ 1050—60 изготовляют двух групп:

группа I—с нормальным содержанием марганца (0,25— 0,80%);

группа II — с повышенным содержанием марганца (0,70— 1,20%).

В марке стали группы II ставится буква Г, указывающая, что сталь имеет повышенное содержание марганца.

Из низкоуглеродистых сталей для особо ответственных сварных конструкций наиболее пригодна сталь марки М16С (ГОСТ 6713—53), содержащая не более 0,20% углерода, 0,12—0,25% кремния, 0,4—0,7% марганца, не более 0,045% серы и не более 0,040% фосфора.

Для сварки низкоуглеродистых сталей применяют электроды типов Э42 и Э42А по ГОСТ 9467—60 с рутиловыми, фтористо-кальциевыми, рудно-кислыми и органическими покрытиями. Род тока, полярность и величину тока выбирают в соответствии с характером покрытия, толщины металла, типа шва и диаметром электрода. Кроме указанных в табл. 5 марок электродов, для сварки низкоуглеродистых сталей находят широкое применение электроды и других марок, например, АНО-3 с рутиловым покрытием и железным порошком; ЭКР с покрытием, содержащим целлюлозу и нечувствительным к повышенному содержанию влаги и многие другие марки электродов, выпускаемых промышленностью.

При сварке угловых швов толстого металла и первого слоя многослойного шва, когда скорость охлаждения достаточно велика, рекомендуется применять предварительный подогрев основного металла до 120—150° С для предупреждения появления закалочных структур и кристаллизационных трещин. Для исправления дефектных участков шва следует применять подварочные швы нормального (полного) сечения, длиной не менее 100 мм, так как при высоких скоростях охлаждения пластичность металла шва под-варки малого сечения понижается, что приведет к образованию трещин. Полезно перед наложением подварочного шва подогреть данный участок основного шва до 150° С. Наличие неполностью проваренных прихваток и заварка дефектов поверхностными («беглыми») швами сильно снижает пластичность металла шва в данном месте и уменьшает надежность сварной конструкции. Последующий местный отпуск или нормализация заваренного участка в данном случае менее эффективны, чем предварительный подогрев.

Среднеуглеродистые стали (С от 0,26 до 0,45%) сваривают проволокой с пониженным содержанием углерода (С от 0,08 до 0,1%), применяют швы с разделкой кромок, небольшой ток; при этом стремятся получить неглубокий провар с целью уменьшения доли основного металла в металле шва. Эти мероприятия снижают содержание углерода в металле шва и предупреждают появление кристаллизационных трещин. Применяется также предварительный и сопутствующий подогрев при сварке до температуры 250—300° С. Высокотемпературный подогрев вреден, так как вызывает появление трещин вследствие увеличения глубины провара основного металла и вызываемого этим повышения содержания углерода в металле шва. Лучшие результаты дает сварка постоянным током прямой полярности. Высокую стойкость металла шва против кристаллизационных трещин и необходимую прочность сварного соединения обеспечивает применение электродов УОНИ-13/55 и УОНИ-13/45. Во избежание образования хрупких и малопластичных закалочных структур в околошовной зоне полезно замедленное остывание изделия после сварки. В ряде случаев приходится прибегать к последующей термической обработке (закалке с отпуском).

Из высокоуглеродистых сталей (С>0,46%), как правило, не изготовляют сварные конструкции. Необходимость их сварки может возникнуть при ремонтных работах, наплавке. В этом случае применяют те же приемы сварки л наплавки, что и для других плохосваривающихся сталей (предварительная и последующая термообработка, предварительный и сопутствующий подогрев, соответствующие марки электродов и режимы сварки).

Краткие обозначения:
σв - временное сопротивление разрыву (предел прочности при растяжении), МПа
ε - относительная осадка при появлении первой трещины, %
σ0,05 - предел упругости, МПа
Jк - предел прочности при кручении, максимальное касательное напряжение, МПа
σ0,2 - предел текучести условный, МПа
σизг - предел прочности при изгибе, МПа
δ5,δ4,δ10 - относительное удлинение после разрыва, %
σ-1 - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа
σсж0,05 и σсж - предел текучести при сжатии, МПа
J-1 - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа
ν - относительный сдвиг, %
n - количество циклов нагружения
sв - предел кратковременной прочности, МПа R и ρ - удельное электросопротивление, Ом·м
ψ - относительное сужение, %
E - модуль упругости нормальный, ГПа
KCU и KCV - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 T - температура, при которой получены свойства, Град
sT - предел пропорциональности (предел текучести для остаточной деформации), МПа l и λ - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С)
HB - твердость по Бринеллю
C - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)]
HV
- твердость по Виккерсу pn и r - плотность кг/м3
HRCэ
- твердость по Роквеллу, шкала С
а - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С
HRB - твердость по Роквеллу, шкала В
σtТ - предел длительной прочности, МПа
HSD
- твердость по Шору G - модуль упругости при сдвиге кручением, ГПа
Группа компаний МеталлЭнергоХолдинг
Бесплатно по России: 8 800 777 21 67
info@metatorg.ru
Ваш город: Россия
Наверх
Напишите нам