Сталь марки 9ХС
Марка: 9ХС (заменители: ХВГ, ХВСГ) Класс: Сталь инструментальная легированная Вид поставки: сортовой прокат, в то числе фасонный: ГОСТ 5950-2000 , ГОСТ 2590-2006 , ГОСТ 2591-2006. Калиброванный пруток ГОСТ 5950-2000 , ГОСТ 7417-75 , ГОСТ 8559-75, ГОСТ 8560-78 . Щлифованный пруток и серебрянка ГОСТ 5950-2000 , ГОСТ 14955-77. Полоса ГОСТ 5950-2000 , ГОСТ 4405-75 . Поковки и кованные заготовки ГОСТ 5950-2000 , ГОСТ 1133-71 . Использование в промышленности: сверла, развертки, метчики, плашки, гребенки, фрезы, машинные штампели, клейма для холодных работ. Ответственные детали, материал которых должен обладать повышенной износостойкостью, усталостной прочностью при изгибе, кручении, контактном нагружении, а также упругими свойствами. |
Химический состав в % стали 9ХС | ||
C | 0,85 - 0,95 | |
Si | 1,2 - 1,6 | |
Mn | 0,3 - 0,6 | |
Ni | до 0,35 | |
S | до 0,03 | |
P | до 0,03 | |
Cr | 0,95 - 1,25 | |
Mo | до 0,2 | |
W | до 0,2 | |
V | до 0,15 | |
Ti | до 0,03 | |
Cu | до 0,3 | |
Fe | ~94 |
Дополнительная информация и свойства |
Термообработка: Состояние поставки Температура ковки: °С: начала 1180, конца 800. Сечения до 200 мм охлаждаются в колодце. Твердость материала: HB 10 -1 = 241 МПа Температура критических точек: Ac1 = 770 , Ac3(Acm) = 870 , Ar1 = 730 , Mn = 160 Свариваемость материала: не применяется для сварных конструкций. Обрабатываемость резанием: в горячекатанном состоянии при HB 221, К υ тв. спл=0,9 и Кυ б.ст=0,5 Флокеночувствительность: не чувствительна. Склонность к отпускной хрупкости: склонна. |
Механические свойства стали 9ХС | |||||||
ГОСТ | Состояние поставки, режим термообработки | Сечение, мм | σ0,2 (МПа) | σв(МПа) | ψ % | KCU (кДж / м2) | НВ, не более |
Изотермический отжиг 790-810 °С. Температура изотермической выдержки 710°С Закалка 870°С, масло. Отпуск: 180-240°С 450-500°С | --- до 40 до 30 | 295-390 --- --- | 590-690 --- --- | 50-60 --- --- | --- 78 --- | (197-241) 59-63 46-50 | |
*Температура отпуска рекомендуется для цанг и других деталей пружинного типа, а также нагруженных валов. |
Твердость стали 9ХС в зависимости от температуры отпуска | |
Температура отпуска, °С | HRC ∂ |
Закалка 840-860°С, масло | |
170-200 200-300 300-400 400-500 500-600 | 63-64 59-63 53-59 48-53 39-48 |
Теплостойкость стали 9ХС | ||
Температура °С | Время, ч | HRC ∂ |
150-160 240-250 | 1 1 | 63 59 |
Механические свойства стали 9ХС при повышенных температурах | ||||||
Температура испытаний, °С | σ0,2 (МПа) | σв(МПа) | δ5 (%) | ψ % | KCU (кДж / м2) | НВ |
Состояние поставки | ||||||
20 200 400 600 700 | 445 320 330 170 83 | 790 710 620 200 98 | 26 22 32 52 58 | 54 48 63 77 77 | 39 88 98 --- 147 | 243 218 213 172 --- |
Образец диаметром 10мм, длиной 50мм, прокатанный. Скорость деформирования 20мм/мин. Скорость деформации 0,007 1/с | ||||||
800 900 1000 1100 1200 | 110 65 42 20 15 | 130 74 46 31 20 | 26 41 52 54 83 | 68 95 --- --- 100 | --- --- --- --- --- | --- --- --- --- --- |
Прокаливаемость стали 9ХС (Твердость, HRC ∂ ) | ||||||||
Расстояние от торца, мм | ||||||||
5 | 10 | 15 | 20 | 25 | 30 | 40 | 50 | 60 |
63 | 56 | 36,5 | 32 | 30 | 28 | 26 | 25 | 24 |
Термообрабока | Критический диаметр в масле, мм |
Закалка | 15-50 |
Физические свойства стали 9ХС | ||||||
T (Град) | E 10- 5 (МПа) | a 10 6 (1/Град) | l (Вт/(м·град)) | r (кг/м3) | C (Дж/(кг·град)) | R 10 9 (Ом·м) |
20 | 1.9 | 7830 | 400 |
Для уменьшения деформации протяжки обычно подвергают двум термическим обработкам: первой - после предварительной механической обработки и второй - после окончательной механической обработки.
Протяжки, изготовленные из рекомендованных марок сталей, обрабатывают в таком же порядке как и протяжки из стали Х12М, соответственно изменив температуры отжига и закалки.
Твёрдость режущей части протяжек из легированной стали Rc = 61-64, а передней части хвостовика Rc = 35-45.
Для всех марок стали при термической обработке протяжек следует выполнять следующие правила:
1. Протяжки при всех операциях (кроме правки) должны находиться в подвешенном состоянии.
2. Окончательный нагрев протяжек производить в соляных ваннах для малых размеров и в шахтных печах для больших. В случае отсутствия таковых и пользования горизонтальными печами нагрев производить на огнеупорных подставках, при этом протяжки, для обеспечения равномерного нагрева, необходимо периодически поворачивать вокруг своей оси.
3. Правку протяжек после закалки и отпуска производить в горячем состоянии.
4. Правку после очистки производить при подогреве сварочной горелкой до температуры отпуска.
5. При охлаждении во время закалки подвешенную протяжку перемещать вверх и вниз.
Напильники. Для изготовления напильников также применяется сталь 9ХС и кроме того углеродистая, легированная и малоуглеродистая стали с последующей цементацией.
Для закалки напильники нагревают в свинцовых и соляных ваннах и в камерных печах. Чтобы предохранить зубья напильника от обезуглероживания, применяют специальные обмазки, которые наносят на насечённую часть напильника. Эти обмазки содержат в себе науглероживающие и связывающие вещества.
Обмазанные напильники подсушивают возле печи и осторожно, чтобы не повредить обмазку, укладывают на огнеупорную подставку в печь. При нагреве в свинцовых ваннах надо обращать особое внимание на тщательное подсушивание напильников и медленное погружение их в ванну во избежание выплескивания свинца.
Предохранение от обезуглероживания обмазками имеет ряд отрицательных сторон:
1. Измельчение материалов, входящих в состав обмазки, и приготовление обмазки - очень трудоёмкие операции и требуют специального оборудования (мельниц, бегунов и пр.).
2. Обмазка при неосторожном обращении может частично обсыпаться и в этих местах зубья напильников не будут предохранены от обезуглероживания.
Значительно более простым и гарантирующим средством от обгорания зубьев является травление напильников в водном растворе кислот.
Состав раствора по объёму следующий: серной кислоты (концентрированной) 7%; азотной кислоты (концентрированной) 7%; воды 86%.
Напильники травят в растворе в течение 10-15 мин., затем сушат возле печи и нагревают под закалку. При нагреве следует придерживаться нижнего предела температур.
Напильники из легированной стали калят в масле; цементованные из углеродистых сталей - в воде (до полного охлаждения), а напильники из высокоуглеродистсй стали охлаждают в воде до 140-180° с последующей правкой в горячем состоянии и охлаждением на воздухе. Напильники при температуре 140-180° хорошо правятся деревянным молотком или в специальном приспособлении. Кроме того, медленное охлаждение напильников от температуры 140-180° уменьшает возможность возникновения трещин.
Охлаждать в воде следует только насечённую часть, а хвостовик замачивать после потемнения, чтобы он не принял закалку.
Напильники несимметричной формы следует перед закалкой изгибать в сторону, противоположную той, где образуется вогнутость, например, полукруглый напильник изгибается перед закалкой в сторону плоской грани. Цементованные напильники легко правятся в холодном состоянии. Отпуску напильники не подвергаются, а сразу же после закалки чистятся.
На заводах, имеющих соответствующее оборудование, очистку напильников производят на пескоструйных аппаратах. На заводах, где отсутствует специальное оборудование, очистку производят травлением в слабом растворе серной кислоты с последующим крацеванием проволочными щётками. После травления напильники промывают в проточной воде, высушивают и смазывают минеральным маслом, эмульсолом и пр. для предохранения от ржавчины.
Можно рекомендовать следующий способ предохранения напильниксв от ржавчины: тёртые белила, к которым подмешивают незначительное количество сажи, растворяют в бензине, и при частом помешивании раствора окунают в него напильники. При просушивании бензин быстро улетучивается и на напильниках остаётся слой светлосерой краски.
В случае, если хвостовик напильника окажется твёрдым, его после очистки отпускают в свинцовой ванне до твёрдости не выше Rc = 35.
Испытание напильников на остроту зуба производится следующим способом: стальной пластинкой, имеющей твёрдость не ниже Rc = 54, проводят плашмя по напильнику в направлении от носа к хвостовику. Пластинка должна прилипать к напильнику и иметь царапины. На напильнике не должно быть следов выкрашивания или смятия зубьев.
Проверку каждого напильника на твёрдость стальной пластинкой следует производить во время правки или выемки из воды. При таком методе контроля брак обнаруживается в самом начале его появления. Наличие трещин определяют ударом напильника о наковальню или металлическую плиту. При наличии трещин напильник издаёт глухой звук.
В случае, если в ряде напильников, особенно личных, после закалки одна сторона окажется мягкой, а другая твёрдой, причину брака следует искать в высокой твёрдости подкладки, на которой насекается напильник, так как при насечке зубья тупятся.
Для изготовления насадных и концевых фрез и спиральных свёрл применяют стали 85ХФ, 65Х, 6ХВ2С, ХГ, ХВ5, 9ХС, У8А и У10А.
Нагрев концевых фрез и свёрл для закалки лучше всего производить в соляных ваннах, а при их отсутствии в камерных печах.
Насадные фрезы закаливают полностью, а в концевых фрезах и спиральных свёрлах закаливают только рабочую часть. Хвостовую часть закалке не подвергают. Отпускают инструмент из углеродистой стали при температуре 220-260°, а из легированной стали при температуре 240-280°. Выдерживают в печи 20-60 мин. Требуемая твёрдость Rc = 56-58. Свёрла, режущие части которых затачивают напильником, отпускают при температуре 320-360°. Требуемая твёрдость Rc = 45-50.
Краткие обозначения: | ||||
σв | - временное сопротивление разрыву (предел прочности при растяжении), МПа | ε | - относительная осадка при появлении первой трещины, % | |
σ0,05 | - предел упругости, МПа | Jк | - предел прочности при кручении, максимальное касательное напряжение, МПа | |
σ0,2 | - предел текучести условный, МПа | σизг | - предел прочности при изгибе, МПа | |
δ5,δ4,δ10 | - относительное удлинение после разрыва, % | σ-1 | - предел выносливости при испытании на изгиб с симметричным циклом нагружения, МПа | |
σсж0,05 и σсж | - предел текучести при сжатии, МПа | J-1 | - предел выносливости при испытание на кручение с симметричным циклом нагружения, МПа | |
ν | - относительный сдвиг, % | n | - количество циклов нагружения | |
sв | - предел кратковременной прочности, МПа | R и ρ | - удельное электросопротивление, Ом·м | |
ψ | - относительное сужение, % | E | - модуль упругости нормальный, ГПа | |
KCU и KCV | - ударная вязкость, определенная на образце с концентраторами соответственно вида U и V, Дж/см2 | T | - температура, при которой получены свойства, Град | |
sT | - предел пропорциональности (предел текучести для остаточной деформации), МПа | l и λ | - коэффициент теплопроводности (теплоемкость материала), Вт/(м·°С) | |
HB | - твердость по Бринеллю | C | - удельная теплоемкость материала (диапазон 20o - T ), [Дж/(кг·град)] | |
HV | - твердость по Виккерсу | pn и r | - плотность кг/м3 | |
HRCэ | - твердость по Роквеллу, шкала С | а | - коэффициент температурного (линейного) расширения (диапазон 20o - T ), 1/°С | |
HRB | - твердость по Роквеллу, шкала В | σtТ | - предел длительной прочности, МПа | |
HSD | - твердость по Шору | G | - модуль упругости при сдвиге кручением, ГПа |